J'ai le plaisir de vous inviter à la soutenance de ma thèse intitulée
"Analyse Qualitative des Systèmes Biologiques par des Méthodes
Algébriques" ainsi qu'au pot qui suivra.
La soutenance se déroulera le vendredi 17 juin à 15h en salle 101,
couloir 25-26 (1er étage), au Laboratoire d'Informatique de Paris 6
(LIP6), 4 Place Jussieu, 75005 Paris.
Voici des plans d'accès :
http://www.upmc.fr/fr/universite/campus_et_sites/a_paris_et_en_idf/jussieu.html
http://www.lip6.fr/informations/comment.php
Bien cordialement,
Wei NIU
-------------------------------------------------------------------------------------------------
Dear colleagues,
I would like to invite you to the defense of my thesis entitled
"Qualitative Analysis of Biological Systems Using Algebraic Methods"
as well as the following party.
It will take place at 15:00 on Friday 17th June, in the room 101,
corridor 25-26 (the first floor), LIP6, 4 Place Jussieu, 75005 Paris.
Following are the maps of access:
http://www.upmc.fr/en/university/campus2/in_paris_and_the_paris_region/jussieu_campus.html
http://www.lip6.fr/informations/comment?LANG=en
Yours sincerely,
Wei NIU
--------------------------------------------------------------------------------------------------
************
Jury
************
Rapporteurs :
M. François Boulier, Professeur, Université Lille I
M. Bican Xia, Professor, Peking University
Examinateurs :
M. Jean-Charles Faugère, Directeur de Recherche, INRIA
M. Valery Romanovski, Senior Researcher, University of Maribor
M. Mohab Safey El Din, Maître de Conférences, UPMC
Directeur de thèse :
M. Dongming Wang, Directeur de Recherche, CNRS
***************
Abstract
***************
This thesis is dedicated to qualitative analysis of biological
systems, modeled as systems of differential or difference equations,
using algebraic methods. We study the problems of detecting steady
states, analyzing stability and different kinds of bifurcations, and
constructing limit cycles for both continuous and discrete biological
models, show how to reduce these problems to those of solving
polynomial or semi-algebraic systems according to stability criteria
and techniques from the qualitative theory of dynamical systems, and
explain how the latter problems can be solved by using an algebraic
approach based on the methods of triangular sets, Gröbner bases,
quantifier elimination, and real solution isolation and classification.
Experiments with various biological systems show the effectiveness of
our algebraic approach. In particular, the stability, three kinds of
bifurcations, and limit cycles for the self-assembling micelle system
with chemical sinks are successfully analyzed. Exact algebraic
conditions on the parameters of this system are derived to describe
the kinds of bifurcations and the stability and types of the
bifurcation points, and three limit cycles are constructed from a
steady state by small perturbation.
--------------------------------------------------------------------------
Wei NIU
LIP6 -- Équipe-projet SALSA
Université Pierre et Marie Curie
Boîte courrier 169
Couloir 26-00, Étage 3, Bureau 338
4 place Jussieu
75252 PARIS cedex 05
Aucun commentaire:
Enregistrer un commentaire